Problem 136
Primary tabs
For most $C^2$ maps $f : [0,1] \to [0,1]$, for all $\epsilon >0 $ there is a hyperbolic set $\Lambda$ such that $h(f|\Lambda) \geq h(f) - \epsilon.$ (See question 8c.)
For most $C^2$ maps $f : [0,1] \to [0,1]$, for all $\epsilon >0 $ there is a hyperbolic set $\Lambda$ such that $h(f|\Lambda) \geq h(f) - \epsilon.$ (See question 8c.)
Tags
Comments
See proposition 2 in
See proposition 2 in
K. Gelfert, C. Wolf. On the distribution of periodic orbits. (English summary)
Discrete Contin. Dyn. Syst. 26 (2010), 949–966.
Add a new comment