# Problem 90

## Primary tabs

If $f$ is Anosov on $M$ and $\tilde M$ contractible, what does $H^k(M)(\sim H^k (\pi _1(M)) )$ tell you via $f_\ast$ eigenvalue information? (See [1], pp. 200-202)

If $f$ is Anosov on $M$ and $\tilde M$ contractible, what does $H^k(M)(\sim H^k (\pi _1(M)) )$ tell you via $f_\ast$ eigenvalue information? (See [1], pp. 200-202)

## Tags

## Comments

## $\tilde{M}$ is the universal

$\tilde{M}$ is the universal cover of $M$; the book reference to Hu is our best guess.

## Add a new comment